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Abstract

Driving behavior classification is an essential real-world requirement in different
contexts. In traffic safety, avoiding traffic accidents by taking corrective actions against
aggressive behaviors is necessary to protect drivers. Similarly, in the automotive insurance
industry, distinguishing between driving behaviors is essential to adopt usage-based
insurance (UBI) policies. Also, in the ridesharing industry, monitoring and evaluating
driving behaviors is critical for risk assessment and service improvement. This research
presents a deep learning-based solution for driving behavior classification using an
optimized Stacked-LSTM model based on the signals of smartphone embedded sensors
generating two different classification models: three-class and binary. Three-class
classification distinguishes between normal, drowsy, and aggressive behaviors to support
advanced driver-assistance systems (ADAS). Binary classification differentiates between
aggressive and non-aggressive behaviors to support commercial applications, such as
ridesharing services and automotive insurance services based on UBI. Our time-series
classification models have been evaluated on the public UAH-DriveSet dataset. Using the
proper number and type of features, the optimum factor of upsampling for the raw signals,
and the optimum time-series window size, our proposed Stacked-LSTM model made a
breakthrough in the Fl-score when applied to the aforementioned dataset. The achieved
scores are 99.49% and 99.34% for the three-class and binary classification models,
respectively. Comparisons with state-of-the-art models, our three-class classification model
surpassed the highest published Fl-score of 91% by 8.49% when applied to the

aforementioned dataset.
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Conclusion

This research has presented superior models for driving behavior classification featuring
two different tasks (three-class classification and binary classification) using a Staked-LSTM
architecture based on smartphone embedded sensors' signals represented as time-series
windows. The three-class classification task distinguished between normal, drowsy, and
aggressive driving behaviors, while the binary classification task differentiated between
aggressive and non-aggressive behaviors. First, we optimized the structural and training
parameters of the proposed Stacked-LSTM model, which achieved an F1-score (95.26%),
which is higher than the latest reported state-of-the-art F1-score (91%) by 4.26%. Next, we
utilized extra features (acceleration, jerk, course angle, and course angle variations),
upsampled the signals by a factor of five, and configured a smaller window size (16
timesteps), which increased the F1-score by an extra 4.23%. Finally, our optimized models
have outperformed the state-of-the-art accuracy with the UAH-DriveSet dataset by achieving
an Fl-score of 99.49% and 99.34% for the three-class classification and the binary

classification, respectively.



