&M\J@l@ﬁ:&lﬁyﬁ\ﬂmgﬁubﬂ\
S pati

‘éJAﬂ\g.‘QJAMWJ

il )

S AN Olgd, dala clia 3]

e glaall A 5 sl 2408
el v Gl dadls
A0 smaall A yall ASLeal) — 52a

22019 el — Y E£ daall 0



Ll

sl LS 3 aaing 5 Alle 33 53 e ) ilillaiall diiase dlae | Cilina gl g ghai < ghad sl e

el 8 WLt 5 L0 e ) o3 4 e Ll elldy (R el s & 5uaiV) Jie) dpdall el
dSi e Lpapda 48 Dageay deal) ol 5hY) (e dariia oy ghai o Jinall geelijll (5 siuall ddle CalaaY)
mli e ST a g A0Sl (gl m geally Lgdlad) dmpdall el e Cumy (K1 aadiudl) il
Rt SIS Y o 8 s ) Rk e Sl e 6 5 Al Al i el
leara sty Cllliall (o gee o CadSIL sliie V) Jang Lae agllae o8 Lae 5L} 2y oae al) aladl)
al gl L AL Gl 5 il o @llia 2651 (e daaiia ol pe (8 elad¥) Joned (e 4805 Bl 5 Juzadl
Gia Lo Jslall o3 (e 2a g ¥ oy aadiiaall cldlaie (i gee CELES) 5l caind ) aal Jgla aas
slend anfill Jlae (8 44IS D5ea a5 a3 e Liay) @l i auly @lad o Galay adeay lalas
Llle 228 (4 garl) Cuiadl daddall Jglal) o) A ddlaa¥l 4 )kl J dsW(Empirical evaluation)

QLES\J@M;\.;;.\S.'.“ Lyl 3ac J:\s.\lae_gs'i (AADP)R,.\;.A}B\ATHABS}QI\“\JJJ\Q& RCgERY
Aalia ) cobal) aay 45 Hlaall Glld g dasa il Qw\‘;ub)ﬂ\g};ﬁ&\ﬁdﬁu&}jub)ﬂ‘

oleadl il B3R (e

055« (benchmark) Dueais Liad LS Giliaa jall (& (2 geal) £) i abl aany Ll sl (i jal
el Aala iy 5acl8 Al Gade ued ol AWlS YAY L) ASLaYl ey calliie YETY (e
Aoy Aali ey oasandl (e Ailide £ il ddast Cun e Al s GO e L Leal) apl)

) 1Ll (ym garll CRES A e (g garll uind A gred WiSey of ) Ayl sda cuali g elaY)



&b Bl (a gardl £ 53l (e Adliaal o) 3 ki Juadl e pasdl (Laalall el clily sacld

Al



Integrating Software Requirements
Ambiguity Resolution Techniques with
Empirical Evaluation

By

Rasha Mohammad AlOmari

Supervised By

Professor: Hanan ElAzhary



ABSTRACT

High-level goals of a software project are initially elicited from the stakeholders in
the form of natural language user requirements. Unfortunately, natural languages
suffer from inherent ambiguity, where an expression may have more than one
meaning or could be understood in different ways. This can lead to critical
differences between the intended system and the actual one. Resolving ambiguity in
the user requirements is much cheaper than dealing with errors in later stages of
software development.

Relatively few research studies in the literature addressed ambiguity resolution and
they utilize various techniques for ambiguity prevention, avoidance, and detection.
Unfortunately, none has been successful enough to be widely adopted. This also
stems from the fact that there is a shortage in empirical evaluations of such
techniques. Additionally, techniques for ambiguity avoidance are provided merely as
general practices.

Thus, this research developed the Ambiguity Avoidance Detection Prevention
AADP tool, which implements various requirements ambiguity resolution
techniques. This tool composed of three modules: 1) avoidance module that enforces
ambiguity avoidance rules; 2) prevention module that fully implements an existing
partially implemented work; 3) detection module that detects ambiguities consulting
four resources such as ambiguity database.

We gathered the most prevalent ambiguity types. Then we built a benchmark
of 2462 real requirements. Additionally, we collected 282 ambiguous words and
phrases to fill the ambiguity database to conduct an empirical qualitative and
quantitative evaluation. The evaluation compares the three techniques in term of
ambiguity types coverage and time performance. This study concluded that the two
techniques ambiguity avoidance and ambiguity detection (using ambiguous phrases
database) were the best candidates for integration into a final ambiguity resolution
tool. That is because they cover all ambiguity types considered in this study.



