تكوين مكثفات MOS نانوية من أغشية أكسيد النحاس الموجبة القطبية المصنعة بطريقة المحلول السائل

صفية عبدالرحمن سعيد الشهري

بإشراف:

د هالة الجوهري

د نورة السناني

المستخلص

أخرى. جميع الأغشية الرقيقة، أغشية شبه الموصل Cu_xO وأغشية العازل Y_2O_3 تم ترسيبها على ركائز سيليكون من نوع Y_2O_3 الشكيل عينات متنوعة من مكثفات Y_2O_3 . من نوع Y_2O_3 المستخدام Y_2O_3 . جميع مكثفات Y_2O_3 أظهرت قطبية من النوع الموجب. السعة الكلية السعة الكلية السعد النطاق المسطح Y_2O_3 أظهرت قيمة عالية Y_2O_3 وه ونانو فار اد/سم عندما استخدمنا محلول خلات Y_2O_3 عندما الثنائي مع Y_2O_3 كعازل. بشكل عام مكثفات Y_2O_3 مع عازل Y_2O_3 أعطت قيم أعلى لتر اكيز حوامل الشحنة الموجبة Y_2O_3 من تلك التي مع Y_2O_3 . أقل قيمة للتيار المتسرب حوالي Y_2O_3 من تلك التي مع Y_2O_3 . أقل قيمة للتيار المتسرب حوالي Y_2O_3 من تلك التي مع Y_2O_3 مع مستخلص أور اق السبانخ Y_2O_3 .

Fabrication of Nanoscale MOS Capacitors Using Solution-Processed P-Type Cu₂O Thin Films

Safeyah Abdulrahman Seed Al-Shehri

Supervised By

Dr. Hala Al-Jawhari

Dr. Norah Al Senany

ABSTRACT

Copper oxide in Cu₂O phase is a potentially promising material for many applications due to its unique intrinsic p-type polarity, transparency, non-toxic, abundance, and low manufacture cost. Moreover, the fact that such oxide could be prepared at low temperature with solution process makes it a perfect candidate for development of flexible, printable and transparent electronic devices. In this work, we prepared Cu_xO thin films using three different solution precursors at low annealing temperature of 200°C. We, then, used those films to fabricate Metal Oxide Semiconductor (MOS) capacitors which are essential for designing transparent p-type thin-film transistors. The first Cu₂O solution was prepared by mixing Cu(II) acetate with 2-Methoxyethanol and Ethanolamine that serve as solvent and stabilizer, respectively. Glycerol was, then, added to the mixture with different volume ratios as a helping agent to reduce the annealing temperature. Applying the green chemistry, we, secondly, prepared CuO solution by dissolved Cu(II) nitrate in deionized water and

glycerol. Finally, we tried a novel and simple green synthesis of Cu_2O thin films by mixing the copper powder with spinach leaves extract for the first time. To complete the building of the MOS capacitors we need to prepare a good high- κ dielectric material. Y_2O_3 as a high- κ dielectric was selected due to its good electrical properties, on one hand, and the ability of producing it by green chemistry, on the other. All films, the semiconductor films Cu_xO and dielectric films Y_2O_3 , were then spun on P^+ Si substrates to form various MOS structures. We build six MOS capacitors three of them with Y_2O_3 and the others with SiO_2 . All fabricated MOS capacitors exhibited P-type polarity. The total MOS capacitance at flat band ($C_{MOS,FB}$) showed a high value of $59.57nF/cm^2$ when we used the Cu(II) acetate solution with SiO_2 as dielectric. In general MOS capacitors with SiO_2 dielectric gave higher values of the acceptor doping concentrations (N_a) than those with Y_2O_3 . The lowest value of leakage current about $6.24 \times 10^{-4} A/cm^2$ at V = -1V was observed in MOS capacitor with Y_2O_3 and Cu(II) acetate, while the smallest hysteresis voltage around 20mV was noticed in MOS capacitor with spinach leaves extract and SiO_2 .